Judith Jeyafreeda ANDREW, Mark VINCENT, Nicolas GARCELON, Anita BURGUN

Abstract

This study evaluates Large Language Models for extracting temporal relations from clinical reports of pediatric rare disease patients. We aim to create accurate patient timelines by identifying relationships between phenotypes and temporal entities, potentially improving disease progression understanding and diagnosis.

Introduction	Dataset	
 Focus: Temporal Relation Extraction for rare disease patient timelines Importance: Time and order of symptoms can differentiate related conditions Goal: Create accurate patient timelines from clinical reports 	 25 clinical reports (Necker Hospital) 706 annotated relations Pre-annotated phenotypes & temporal entities 	
Relation Types		

BEGINS-AT: Phenotype begins at time point ENDS-AT: Phenotype ends at time point BEFORE: Phenotype ends before time OVERLAP: Share common time span CONTAINS: Time contains phenotype span SIMULTANEOUS: Same time span

BEFORE-OVERLAP: Occurs before and during time span

Methods

Models

- Llama3, Gemma, Mistral
- Locally deployed for privacy/security
- Binary classification
 1000 tokens of context

Multi-class classification

Approach

Limitations

- Limited dataset (25 clinical reports)
- French language data may influence results
- Computing constraints limited experiment scale

Results

Binary Classification F1 Scores

Model	BEGINS-A	Г	ENDS-AT	CON	TAINS	BEFORE	
Llama	0.56		0.55	0.18		0.48	
Mistral	0.66		0.70	0.	17	0.59	
Gemma	0.62		0.57	0.40		0.59	
Model	OVERLAP	BEFORE-OVERLAP		SIMULTANEOUS			
Llama	0.03	0.67			0.10		
Mistral	0.11	0.65		0.35			
Gemma	0.37		0.66		0.66 0.37		0.37

Multi-class vs Binary Performance

Model	Multi-class Avg F1	Binary Avg F1	Improvement
Llama	0.26	0.37	+42%
Mistral	0.32	0.46	+44%
Gemma	0.31	0.45	+45%

Key Findings

.

Binary classification prompt significantly outperforms multi-class approach

- Different LLMs excel at different relation types:
- Mistral: Best for BEGINS-AT (0.66), ENDS-AT (0.70), BEFORE (0.59)
- Gemma: Best for CONTAINS (0.40), OVERLAP (0.37), SIMULTANEOUS (0.37)
 Llama: Best for BEFORE-OVERLAP (0.67)
- Complex relations (OVERLAP, CONTAINS, SIMULTANEOUS) remain challenging for all models
 - Binary classification shows 42-45% improvement over multi-class approach

Conclusion & Future Work

Achievements

- Binary classification is more effective for relation extraction
- LLMs show promise for temporal relation extraction in healthcare
- Different models show strengths with different relation types

Next Steps

- Improve detection of complex temporal relations
- Ensemble approach combining multiple models
- Expand dataset size for better generalization

Contact Information: Judith Jeyafreeda Andrew | Institut Imagine | judith.jeyafreeda@institutimagine.org

